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Rheology of Dilute Solutions of Rod-Like 
Macromolecules 1 

A. R. Altenberger 2 and J. S. Dahler  2 

The rheological properties of dilute solutions of rod-like macromolecules are 
treated on the basis of a new model of macroparticle dynamics. Calculations are 
presented of the rigidity modulus, the shear viscosity, and the first and second 
normal stresses. 
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1. INTRODUCTION 

In recent years, there has been a resurgence of interest in the dynamical 
and rheological properties of solutions of axisymmetric molecules. The 
stores of experimental information on these subjects, although far from 
complete, have been steadily increasing, and visible progress has been 
recorded in the ability to describe theoretically the transport and relaxation 
properties of such solutions. 

Because of the extraordinary microscopic complexity of 
macromolecular systems, the introduction of simplifying approximations 
and assumptions is unavoidable. Thus, one invariably uses quite crude 
mechanical models for the macromolecules themselves, for their mutual 
interactions, and for their interactions with the solvent as well. These 
models and the mathematical theories based upon them can be judged suc- 
cessful (and potentially useful) provided that only a few experiments are 
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needed to establish the numerical values of whatever adjustable parameters 
are left unspecified. Once these values have been determined, the theory 
then can be used to predict the results of other experiments. A model which 
succeeds in accounting for a single property but fails for all others is 
obviously inadequate. 

In this note, results are reported which we recently have obtained 
using a relatively simple dynamical model for dilute solutions of rod-like 
macromolecules. Since details of our theory have been presented elsewhere 
[ 1 ], we present here only a few of our computational results together with 
the most important of the conclusions that can be drawn from our 
investigation. 

2. T H E  M O D E L  

In the dilute solutions to which our attention is restricted, the mutual 
interactions of the solute particles are negligible. In this limit each 
macromolecule makes its separate contribution to the stress tensor. Thus, 
the only theoretical requirements are a kinematic model for a single rod- 
like macromolecule and a description of how its motion will be affected by 
the solvent in which it is immersed. The best-known way of addressing 
these questions is based on the two-bead dumbbell model 12] of a 
macromolecule or on the more elaborate multibead generalization [3]. 
These models evidently incorporate features which mimic characteristics of 
real axisymmetric solute particles. According to the theories based upon 
these models, the rods or springs which connect adjacent beads are without 
mass and serve only to transmit "backbone" forces from one bead to 
another. The connecting links are assumed to be "porous" and in no way 
affect the motion of the solvent. The beads are local centers of mass and of 
the frictional drag which results from their motions relative to that of the 
surrounding solvent. The solvent is treated as a (Newtonian) continuum 
and Stokes' law is used to compute the frictional forces on the beads. 

One expects the rod-like polymers to exhibit translational anisotropy. 
Because the connecting links are porous, the only means by which the 
linear arrays of beads can acquire this anisotropy is through hydrodynamic 
interactions among the centers of friction, namely, the beads. A great 
advantage of the connector-bead models is the relative ease with which 
these interactions and the associated translational anisotropy can be com- 
puted. However, this virtue must be weighed against the discouraging fact 
that real rod-like macromolecules such as tobacco mosaic virus (TMV), 
pictured in Fig. 1, do not closely resemble the bead-rod or bead-spring 
models, exemplified by the porous rods shown in Fig. 2. The interiors of 
these molecules certainly are not channels through which solvent can freely 
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Fig. 1. An electron micrograph of tobacco mosaic virus. [After 
F.S. Allen, Electro-optics of viruses and bacteriophege, in 
Molecular Electrooptics, S. Krause (ed.) (Plenum, New York, 
1981).] 
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Fig. 2. Porous rod models. 

flow. Furthermore, in order to calculate the hydrodynamic (Oseen) interac- 
tions among the beads--or any other objects--one must specify boundary 
conditions at the bead-solvent interface. But how is this to be done for a 
bead surrogate of a portion of a macromolecule such as TMV? Finally, 
there remains a nagging uncertainty about the applicability of ordinary 
hydrodynamics very near the surfaces of macromolecules and to the 
calculation of interactions between closely spaced objects. The inescapable 
conclusion is that, although the models provide well-defined procedures for 
computing solvent-transmitted interactions between different parts of the 
macromolecule, the numerical results of any such computations must be 
viewed as no more than sensible first approximations to the exact values of 
quantities which may be as impossible to compute as they are to precisely 
define. 

An alternative approach has been developed by Brenner et  al. [4] as 
well as by others. The idea is to model the macroparticles as rigid axisym- 
metric bodies and compute their translational anisotropic (and rotational 
mobilities, as well) using macroscopic fluid mechanics. An appealing 
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feature of this approach is that the surface geometries of the models more 
closely resemble those of real macromolecules than do the surfaces 
associated with the bead-connector models. However, the issue of boun- 
dary conditions and the possible inapplicability of conventional fluid 
mechanics are as much parts of this theory as they are of its connector- 
bead counterpart. As far as we are aware this second approach has not 
been subjected to experimental tests. However, our own calculations [1]  
do cast doubt upon the accuracy of macroscopically derived formulas for 
the mobilities of rod-like macromolecules. 

Our model for a rod-like particle incorporates some of the more 
desirable features from both of the previously described models. We picture 
the macromolecule as a stiff rod of uniform mass density with different 
translational properties in directions transverse and parallel to its axis. The 
solvent velocity field is assumed to change only slightly over distances com- 
parable to the length of the particle and to change not at all over distances 
comparable to its diameter. Thus, the rod-like particle is treated essentially 
as a "point rod," analogous to the point dipole model used in the theory of 
dielectrics. There are natural extensions of this model which have not yet 
been analyzed. 

Subject to the assumptions of our model the equations of motion for a 
rod can be written as follows: 

m R =  - ( .  [ R - w ( R ) ]  + ~ ( R )  (1) 

mi: = - ( .  [/" -- r .  VRw(R)] + 2F(r) + r .  VR~(R ) (2) 

Here, 2m denotes the mass of the particle, R the position vector of its cen- 
ter, and r the vector extending from the center of one-half of the rod to that 
of the other. The functional form of the rod's friction tensor is 
( =  ~l l~+ 4 •  with ~=r / I r l  denoting the unit vector in the axial 
direction and I the unit tensor. 

The symbol q~(R) signifies the external force on the rod and can, in 
principle, include its interactions with other rods. F(r)  is the "binding 
force" of interaction between the two halves of the rod and w(R) is the 
solvent velocity. Calculations for elastic and rigid rods must be performed 
somewhat differently. Here we limit our considerations to rigid rods for 
which Irl = l is a constant, equal to one-half of the total length (L) of the 
macromolecule. We also restrict our attention to homogeneous flows 
w(R, t) = R- ct(t) for which the velocity gradient a = VRw(R, t) may be a 
function of time but is independent of spatial location. 

The constraint that Irl be constant reduces the number of degrees of 
freedom of a rod to three translational and two rotational. The equation of 
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motion [from Eq. (2)] for displacements in directions transverse to the 
axis e - f is 

m6• = 4 • 1 7 7  + e ' V R ' ~ •  (3) 

with a •  denoting the transverse part (projection) of the 
vector a. 

We assume the rod- rod  interactions to be negligible and that there are 
no external forces. The stress is then uniform and can be written in the 
form 

a ( t ) = c k B T { - 1 +  3(ee 1 -31) + x ( e e e ' a * ' e )  

- v ( e .  a*e .  a* - e e ( e .  a*)2) } (4) 

Here c is the number of rods per unit volume, kB is the Boltzmann con- 
stant, and x =  ~ll/r177 is a measure of the translational anisotropy. The 
dimensionless quantity v=D~ot(ml2/2kBT) is defined in terms of the 
rotational diffusion coefficient 

Dro t = 2kB T/12~. (5) 

The quantity a* = a(t)/Drot appearing in Eq. (4) denotes the dimensionless 
velocity gradient tensor, which for simple shear flow (in the xz plane) is 
related to the rotary P6clet number ~*(t) by the formula a * =  ~*(t)nxnz, 
where ni is the unit vector in the direction of the coordinate axis i. 

Finally, the bracket ( . . . )  indicates orientational averaging over a rod 
distribution function f (e ,  t) which satisfies the kinetic equation 

D~o~t ~, f(e, t) = (So + 6S) f(e, t) (6) 

wherein 

and 

So = Ve 2 -- sin 0 O0 sin 0 -~ sin 2 0 ~ 2  (7) 

6S = 3~*(e �9 n~)(e �9 n,) - ~*(e- nx)(n,-V~) 

= ~* sin ~ 3 sin 0 cos 0 - sin 3 ~ 
(8) 
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3. TESTING/PREDICTIONS OF THE THEORY 

Our formula given by Eq. (4) is a generalization of the expression for 
the single-particle contributions to the stress which was employed by Doi 
and Edwards [5] and by Jain and Cohen [6]. The formula which these 
authors used is obtained from Eq. (4) by setting lc = 1 and v = 0. This 
limiting form of Eq. (4) is identical to the expression obtained by Bird et aL 

[-23 for a dilute solution of rigid dumbbells. While the term proportional to 
v is usually negligible (v = 2 x 10 8 for TMV), the viscometric functions 
depend sensitively on the value of the parameter ~, 0 ~< ~: ~< 1. For the TMV 
solutions considered here, the experimental value of ~c is 0.313. 

In recent calculations performed by Doi and Edwards [-5] and by 
Kuzuu and Doi [7], the task of computing the fourth rank tensor (eeee)  
was obviated by discarding all but the first and second terms from Eq. (4). 
Jain and Cohen [6] and Dahler et al. [8] obtained much better agreement 
with experiment (for PBLG in m-cresol) at high rates of shear by retaining 
the third term, with ~c= 1. All of these studies used a semiempirical 
procedure due to Doi and Edwards [-5] which corrects for polymer 
interactions by introducing a concentration-dependent rotational diffusion 
coefficient. The calculation of Dahler et al. [8] incorporated hydrodynamic 
screening as well. 

The fourth rank tensor (eeee) can be eliminated from Eq. (4) by 
invoking the relationship 

D l d  rot d-t (ee)  - [a  *~. (ee)  + ( ee ) .  a*] = 2 [1 -  3 (ee) ]  -- 2(eee. a* . e )  

(9) 

which follows directly from the kinetic equation (6). Here a * r  denotes the 
tensor transpose of a*. The relationship (9) allows us to transform the 
stress tensor expression (6) into the computationally convenient Giesekus 
form 

o(t) = ckB T { --(2 -- ~:) I + 3(1 -- 1r + �89 *T. ( e e )  + ( e e )  . a * ]  

d ) 
- v(e" ct*e" a* -ee(e" a*) z )  -l~cDFo~ -~ ( e e )  (10) 

This stress tensor and the associated viscometric functions are simple 
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to compute only in the linear response (l.r.) approximation. Thus, with 
ct(t) = cto(co ) exp(i~ot), we find that 

1 
01~( o9 ) = -12nck  B T 6( (o ) + -~  c~11121 Trao( (O ) 

[~0 3 _1 ][ao(Og) + iTrao(CO)] + C~ I112 + ~ cka T a~(og) - 2 
ico + 6DrotJl_ 

(11) 

From this one concludes that the shear viscosity contribution of the rods is 

6~1(o9) = ~-~ cr 2 + ~ ckB T( io~ + 6D~ot) -1 (12) 

that the corresponding contribution to the coefficient of bulk viscosity is 

6nb(('O) = ~8 c~I112 (13) 

and that the Trouton (elongational) viscosity is related to the coefficient of 
shear viscosity by 

r/r(co) : 36q((o) (14) 

The two rigidity moduli are given by the formulas 

3 (~-~-- 0 ((~176 (15) 
[G'(og)] = [  1 + ((o/6Drot) 2 

and 

2 I x + 2  1 1 [ _ G , , ( , ) ] : ~ ( ~ _  0 (,/6D,ot) 3 +(og].6Drot)~] (16) 

These moduli are plotted in Fig. 3 as functions of the dimensionless 
frequency o9*--o)/6Drot, for a number of values of the anisotropy 
parameter x. The theoretical results have been tested against experimental 
data for TMV solutions. The tobacco mosaic virus particle is a good 
example of a rigid-rod macromolecule: its length is 2l= 3000/~ and its 
diameter is d =  180/~. The measured values of its rotational and trans- 
lational diffusion coefficients are tl~ Drot=350+_3.05s -1 and Dtr = 
(3.4 + 0.1)• 108 A2. s- l ,  respectively. These are specific to a water solution 
at 20~ in the presence of sodium phosphate buffer (pH = 7.5). 
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Fig. 3. Loss and storage moduli versus reduced frequence ~o*= og/6Dro t. 
The dashed curve and filled circles, respectively, indicate the theoretical 
predictions and experimental values of [G'(og)](2m/kT). The solid curve 
and filled triangles indicate the K-dependent theoretical predictions and 
experimental values of [G"(eo)](2m/kT). (After Ref. 1.) 

From formula (5) for Oro t and the corresponding expression 

Dtr  =~--~ [~1/1 -I- 2~21-]  (17) 

for the translational diffusion coefficient, we conclude that 
4• = 1.03 x 10 - 6  g-  s -1  and ~, = 3.22 x 10 7 g. S 1. Consequently, the 
"experimental value" of the anisotr0py parameter  is ~c = 0.313. 

From these data and the mass Elll 2m = 6.48 • 10- '2  g of a TMV par- 
ticle, we obtain a theoretical estimate of 22 cm3-g 1 for the intrinsic 
viscosity 

kBT 
[ 7 ] -  (1.5 + x )  (18) 

30mDrot  r/o 

This value differs by approximately 25 % from the experimentally observed 
value of 27 cm 3. g -  1. The difference may be due, at least in part, to the fact 
that we have used for t/0 the viscosity of pure water, whereas the 
experiments were done for buffered sodium phosphate solutions. 
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The experimental measurements and theoretical predictions of the 
rigidity moduli are displayed in Fig. 3. There is little more than qualitative 
agreement between the two. The high-frequency asymptotic limit of the 
storage modulus is equal to the Kirkwood-Auer result 
lim~,_~[G'(o~)](2m/kBT)=3/5, but the experimental value is 0.99. 
Similarly, the asymptotic limit of the loss modulus is given by the 
expression l imos ~[G"(o~)](2m/o~*kB T)= (2/5)•. The numerical value of 
this quantity is 0.2 for the Kirkwood-Auer theory (~=0.5), and our 
estimate, based on ~=0.313, is 0.13. The experimental value [9] of 
approximately 3 is far greater than either of these predictions. 

The large discrepancies between the experimental results and the 
predictions of linear response theory may indicate that the simple diffusion- 
type theories currently used by most rheologists are incapable of providing 
quantitative predictions of polymer transport coefficients. Although we 
doubt that this is so, more refined measurements of the rigidity moduli are 
needed before a final conclusion can be drawn. 

In order to compute the non-Newtonian response of the fluid, the 
kinetic equation (11) must be solved for large rates of shear. We have 
examined the nonlinear response of a rod-polymer solution to the time- 
independent rate of strain ct=~nxnz. An approximate solution of the 
kinetic equation was obtained using the projection operator technique. 
This solution was then used to compute numerical values of the shear 
viscosity coefficient and of the two normal stresses. The results of these 
calculations are summarized in Figs. 4-6. The shear viscosity increment 6q 

l 
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0 ~ " ' ~ .  j K  = 1,0 

(,0 0.6 .,. -~. 
r \ ' .  --.. 

~-- Z~ ~ .. /K=0.515 " ~ . ~ .  
�9 ~ 0.4 - " ~ . .  ~ ' ~ -  

0,2  
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0 2 4 6 8 10 12 14 16 

C~ 

Fig. 4. The  var ia t ion 6r/(~*)/,~r/(0) of the shear  viscosity with the ro tary  
P6clet n u m b e r  ~* =c~/D~ot. The  open tr iangles represent  exper imenta l  
values. (After Ref. 1.) 
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Fig. 5. The first normal stress coefficient i~l(d:*)(D2ot/kTc) versus 0i*. 
(After Ref. 1.) 

is compared with the experimental data of Wada [12]. No experimental 
measurements of the normal stresses have been reported. 

At low values of the rotary P6clet number ~* = ~/Drot, we obtain the 
relatively simple expressions 

'['9 ' ' ]}  
15Dro t 1 .5+K7 ~--~-- ]-~ ~C + ~ V (19) 

30Dro, I-~ L223,608 1,84~ ~c- 31v (20) 
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a 

Fig. 6. The second normal stress coefficient r 10 3 versus :i*. 
(After Ref. 1.) 
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and 

m,vl} 
(p2(0i*) -- 105D~o t L1,-~- ~ (1 - x) - 

These reduce to the well-known results for the rigid dumbbell model [2]  
when K = 1 and v = 0. 

Our calculations show that the agreement between theory and the 
data collected by Wada [12] is rather good for rotary P6clet numbers no 
greater than 4. At higher values of ~* the theory underestimates the rate of 
viscous thinning. This difference may be due to finite concentration effects 
(Wada did not extrapolate his data to zero particle concentration) or to 
inadequacies of our approximate solution of the kinetic equation. 
According to our calculations the first normal stress is a positive definite, 
monotonically decreasing function of ~*. It also depends weakly on the 
anisotropy parameter K. The second normal stress is negative semidefinite 
(vanishing for x = 1) and strongly dependent on x. It appears to increase 
monotonically with ~* to the asymptotic limit ~ 2 ( ~ ) =  0. 

4. C O N C L U D I N G  REMARKS 

The model, described in Section 2, appears to be a useful alternative to 
the conventional multibead model for rigid rod-like macromolecules. Our 
strategy of using experimental values for the particle mobilities eliminates 
the need for a theory of the obscure and very difficult to calculate 
solute-solvent interactions. In this we have followed the example set by the 
quasihydrodynamical theory of ionic transport in electrolyte solutions. The 
model parameters once established by this procedure permit us to make 
predictions of other measurable viscometric properties and this, in turn, 
allows us to test the consistency of the model. This program has been 
carried only partially to completion because there are not yet enough 
reliable experimental data for dilute solutions of rod polymers. 

As the polymer concentration increases, so also does the difficulty of 
devising a realistic microscopic model and an associated, computationally 
tractable mathematical theory. As far as we are aware, no theory presently 
exists which is able to account satisfactorily for the effects of finite concen- 
tration. 
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